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Abstract: Clustering sets of histograms is becoming increasingly popular nowadays thanks
to the success of the versatile method of bag-of-words. The bag-of-word technique was
originally developed for text categorization, and has been later successfully extended to
visual categorization, as well, where it is generally termed bag of features. In the latter
case, histogram clustering can also be performed to quantize features for building a visual
word vocabulary. We investigate the use of a parametric family of distortion measures, the
α-divergences, for clustering histograms. In information geometry, those α-divergences
are the canonical divergences of dually flat spaces of positive measures, or dually affine
geometry of constant curvature κ = 1−α2

4
spaces of probability measures. ¿From the

standpoint of applications like information retrieval systems, it usually makes sense to deal
with symmetric divergences. Thus we symmetrize α-divergences, extending the Jeffreys
divergence, and present two kinds of k-means clustering algorithms: (1) The first kind
of clustering requires to explicitly build the symmetrized α-centroids, and end up with a
variational k-means when the centroids are not available in closed-form, (2) the second kind
of clustering considers two dual sided α-centroids per cluster and define a mixed divergence
between an histogram and two other histograms. This yields a coupled k-means clustering
where each cluster is induced by two dual centroids. Furthermore, we extend the k-means++
seeding to mixed α-divergences for the coupled k-means technique, and report a guaranteed
probabilistic bound that applies to the sided/symmetrized or mixed clusterings. This mixed
α-seedings provide guaranteed probabilistic clustering bounds by picking up seeds from the
data and do not require to explicitly compute centroids. It therefore follows a fast clustering
technique in practice, even when cluster centers are not available in closed form. Finally, we
describe a soft mixed α-clustering technique.
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1. Introduction: Motivation and background

1.1. The Bag-of-Word modeling paradigm

A common task of Information Retrieval (IR) systems is to classify documents into categories. Given
a training set of documents labeled with categories, one asks to classify new incoming documents. Text
categorisation [1,2] proceeds by first defining a dictionary of words from a corpus. It then models each
document by a word count yielding a word distribution histogram per document.1 Defining a proper
distance between histograms allows to:

• Classify a new on-line document: We first calculate its word distribution histogram signature and
seek for the labeled document which has the most similar histogram to deduce its category tag.

• Find the initial set of categories: we cluster all document histograms and assign a category per
cluster.

This text classification method based on the representation of the Bag of Words (BoWs) has also
been instrumental in computer vision for efficient object categorization [3] and recognition in natural
images [4]. This paradigm is called bag of features [5] (BoFs) in the general case. It first requires to
create a dictionary of “visual words” by quantizing keypoints (e.g., affine invariant descriptors of image
patches) of the training database. Quantization is performed using the k-means algorithm that partitions
n data X = {x1, ..., xn} into k pairwise disjoint clusters C1, ..., Ck where each data element belongs
to the closest cluster center (i.e., the cluster prototype). From a given initialization, batched k-means
first assigns data points to their closest centers, and then updates the cluster centers, and reiterates this
process until convergence is met after a provably finite number of steps. Csurka et al. [3] used the squared
Euclidean distance for building the visual vocabulary. Depending on the chosen features, other distances
have proven useful: For example, the symmetrized Kullback-Leibler (KL) divergence was shown
to perform experimentally better than the Euclidean or squared Euclidean distances for Compressed
Histogram of Gradient descriptors [6] (CHoGs). To summarize, k-means histogram clustering with
respect to the symmetrized KL (called Jeffreys divergence J) can be used to quantize both visual words
and document categories. Nowadays, the seminal bag-of-word method has been generalized fruitfully to
various settings using the generic bag-of-X paradigm like the bag-of-textons [5], the bag-of-readers [7],
etc. Bag-of-X represents each data (e.g., document, image, etc.) as an histogram of codeword count
indices. Furthermore, the semantic space [8] paradigm has been recently explored to overcome two

1 See the UCI machine learning repository for such data-sets: http://archive.ics.uci.edu/ml/datasets/Bag+of+Words

http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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drawbacks of the Bag-of-X paradigms: High-dimensionality of the histograms (number of bins) and
difficult human interpretation of the codewords due to the lack of semantic. In semantic space, modeling
relies on semantic multinomials that are discrete frequency histograms, see [8].

In summary, clustering histograms with respect to symmetric distances (like the symmetrized KL
divergence) is playing an increasing role. It turns out that the symmetrized KL divergence belongs to
a 1-parameter family of divergences, called symmetrized α-divergences, or Jeffreys α-divergence [37].
In this paper, we describe various α-clustering techniques and study the experimental performance of
those algorithms. Note that clustering with respect to non-symmetrized α-divergences has been recently
investigated independently in [9] and proved useful for applications.

1.2. Mixed centroid-based k-means clustering

Consider a set H of n histograms h1, ..., hn, each with d bins, with all positive real-valued bins:
hij > 0,∀1 ≤ i ≤ d, 1 ≤ j,≤ n. A histogram h is called a frequency histogram when its bins sums
up to one: w(h) = wh =

∑
i h

i = 1. Otherwise, it is called a positive histogram that can eventually be
normalized to a frequency histogram:

h̃
.

=
h

w(h)
. (1)

Frequency histograms belong to the (d− 1)-dimensional open probability simplex ∆d:

∆d
.

=

{
(x1, ..., xd) ∈ Rd | ∀i, xi > 0, and

d∑
i=1

xi = 1

}
. (2)

That is, although frequency histograms have d bins, the constraint that those bin values should sum up
to one, yields d − 1 degrees of freedom. In probability theory, frequency or counting histograms either
model discrete multinomial probabilities or discrete positive measures (also called positive arrays [40]).

The celebrated k-means clustering [10,11] is one of the most famous clustering techniques that have
been generalized in many ways [12,13]. In information geometry [14], a divergenceD(p : q) is a smooth
C3 differentiable2 dissimilarity measure that is not necessarily symmetric (D(p : q) 6= D(q : p), hence
the notation “:” instead of the classical “,” reserved for metric distances) but is non-negative and satisfies
the separability property: D(p : q) = 0 iff. p = q. For a distance function D(· : ·), we denote by
D(x : H) the weighted average distance of x to a set a weighted histograms:

D(x : H)
.

=
n∑
j=1

wiD(x : hj). (3)

An important class of divergences on frequency histograms is the f -divergences [15–17] defined for a
convex generator f (with f(1) = f ′(1) = 0 and f ′′(1) = 1):

If (p : q)
.

=
d∑
i=1

qif

(
pi

qi

)
.

2 More precisely, let ∂iD(x : y) = ∂
∂xiD(x : y), ∂,iD(x : y) = ∂

∂yiD(x : y). Then we require ∂iD(x : x) = ∂,iD(x :

x) = 0 and −∂i∂,j positive definite.
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Those divergences preserve information monotonicity [40] under any arbitrary transition probability
(Markov morphisms). f -divergences can be extended to positive arrays [40].

The k-means algorithm on a set of weighted histograms can be tailored to any divergence as follows:
First, we initialize the k cluster centers C = {c1, ..., ck} (say, by picking up randomly arbitrary distinct
seeds). Then we iteratively repeat until convergence the following two steps:

• Assignment: Assign each histogram hj to its closest cluster center:

l(hj)
.

= arg
k

min
l=1

D(hj : cl).

This yields a partition of the histogram set H = ∪kl=1Al, where Al denotes the set of histograms
of the l-th cluster: Al = {hj |l(hj) = l}.

• Center relocation: Update the cluster centers by taking their centroids:3

cl
.

= arg min
x

∑
hj∈Al

wjD(hj : x)

Since divergences are potentially asymmetric, we can define two sided k-means, or always consider a
right-sided k-means but then define another sided divergenceD′(p : q) = D(q : p). We can also consider
the symmetrized k-means with respect to the symmetrized divergence: S(p, q) = D(p : q) + D(q : p).
Eventually, we may skew the symmetrization with a parameter λ ∈ [0, 1]: Sλ(p, q) = λD(p : q) + (1−
λ)D(q : p) (and consider other averaging schemes instead of the arithmetic mean).

In order to handle those sided and symmetrized k-means under the same framework, let us we
introduce the notion of mixed divergences [18] as follows:

Definition 1 (Mixed divergence)

Mλ(p : q : r)
.

= λD(p : q) + (1− λ)D(q : r), (4)

for λ ∈ [0, 1].

A mixed divergence includes the sided divergences for λ ∈ {0, 1}, and the symmetrized (arithmetic
mean) divergence for λ = 1

2
.

We generalize k-means clustering to mixed k-means clustering [18] by considering two centers per
cluster (for the special cases of λ = 0, 1, it is enough to consider only one). Algorithm 1 sketches the
generic mixed k-means algorithm. Note that a simple initialization consists in choosing randomly the k
distinct seeds from the dataset with li = ri.

Notice that the mixed k-means clustering is different from the k-means clustering with the respect to
the symmetrized divergences Sλ that considers only one centroid per cluster.

3 Throughout this paper, centroid shall be understood in the broader sense of barycenter when weights are non-uniform.
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Algorithm 1: Mixed divergence-based k-means clustering
Input: Weighted histogram setH, divergence D(·, ·), integer k > 0, real λ ∈ [0, 1];
Initialize left-sided/right-sided seeds C = {(li, ri)}ki=1;
repeat

//Assignment
for i = 1, 2, ..., k do
Ci ← {h ∈ H : i = arg minjMλ(lj : h : rj)};

// Dual sided centroid relocation
for i = 1, 2, ..., k do

ri ← arg minxD(Ci : x) =
∑

h∈Ci wjD(h : x);
li ← arg minxD(x : Ci) =

∑
h∈Ci wjD(x : h);

until convergence;
Output: Partition ofH into k clusters following C;

1.3. Sided, symmetrized, and mixed α-divergences

For α 6= ±1, we define the family of α-divergences [19] on positive arrays [20] as:

Dα(p : q)
.

=
d∑
i=1

4

1− α2

(
1− α

2
pi +

1 + α

2
qi − (pi)

1−α
2 (qi)

1+α
2

)
, (5)

= D−α(q : p), α ∈ R\{0, 1}, (6)

with the limit cases D−1(p : q) = KL(p : q) and D1(p : q) = KL(q : p), where KL is the extended
Kullback-Leibler divergence:

KL(p : q)
.

=
d∑
i=1

pi log
pi

qi
+ qi − pi. (7)

Divergence D0 is the squared Hellinger symmetric distance (scaled by a multiplicative factor of 4)
extended to positive arrays:

D0(p : q) = 2

∫ (√
p(x)−

√
q(x)

)2

dx = 4H2(p, q), (8)

with the Hellinger distance:

H(p, q) =

√
1

2

∫ (√
p(x)−

√
q(x)

)2

dx. (9)

Note that α-divergences are defined for the full range of α values: α ∈ R. Observe that α-divergences
of Eq. 5 are homogeneous of degree one: Dα(λp : λq) = λDα(p : q) for λ > 0.

When histograms p and q are both frequency histograms, we have:

Dα(p̃ : q̃) =
4

1− α2

(
1−

d∑
i=1

(p̃i)
1−α
2 (q̃i)

1+α
2

)
, (10)

= D−α(q̃ : p̃), α ∈ R\{0, 1}, (11)
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and the extended Kullback-Leibler divergence reduces to the traditional Kullback-Leibler divergence:
KL(p̃ : q̃) =

∑d
i=1 p̃

i log p̃i

q̃i
.

The Kullback-Leibler divergence between frequency histograms p̃ and q̃ (α = ±1) is interpreted as
the cross-entropy minus the Shannon entropy:

KL(p̃ : q̃)
.

= H×(p̃ : q̃)−H(p̃).

Often p̃ denotes the true model (hidden by nature) and q̃ is the estimated model from observations.
However, in information retrieval, both p̃ and q̃ play the same symmetrical role, and we prefer to deal
with a symmetric divergence.

The Pearson and Neyman χ2 distances are obtained for α = −3 and α = 3, respectively:

D3(p̃ : q̃) =
1

2

∑
i

(q̃i − p̃i)2

p̃i
, (12)

D−3(p̃ : q̃) =
1

2

∑
i

(q̃i − p̃i)2

q̃i
. (13)

The α-divergences belong to the class of Csiszár f -divergences with the following generator:

f(t) =


4

1−α2

(
1− t(1+α)/2

)
, if α 6= ±1,

t ln t, if α = 1,

− ln t, if α = −1

(14)

Remark 1 Historically, the α-divergences have been introduced by Chernoff [21,22] in the context of
hypothesis testing. In Bayesian binary hypothesis testing, we are asked to decide whether an observation
belongs to one class or the other class, based on prior w1 and w2 and class-conditional probabilities
p1 and p2. The average expected error of the best decision maximum a posteriori (MAP) rule is called
the probability of error, denoted by Pe. When prior probabilities are identical (w1 = w2 = 1

2
), we

have Pe(p1, p2) = 1
2

∫
min(p1(x), p2(x))dx. Let S(p, q) =

∫
min(p(x), q(x))dx denote the intersection

similarity measure, with 0 < S ≤ 1 (generalizing the histogram intersection distance often used in
computer vision [23]). S is bounded by the α-Chernoff affinity coefficient:

S(p, q) ≤ Cβ(p, q) =

∫
pβ(x)q1−β(x)dx,

for all β ∈ [0, 1]. We can convert the affinity coefficient 0 < Cβ ≤ 1 into a divergence Dβ by
simply taking Dβ = 1 − Cβ . Since the absolute value of divergences does not matter, we can rescale
appropriately the divergence. One nice rescaling is by multiplying by 1

β(1−β)
: Dβ = 1

β(1−β)
(1−Cβ). This

let coincide the parameterized divergence with the fundamental Kullback-Leibler divergence for the limit
values β ∈ {0, 1}. Last, by choosing β = 1−α

2
, it yields the well-known expression of the α-divergences.

Interestingly, the α-divergences can be interpreted as a generalized α-Kullback-Leibler diver-
gence [19] with deformed logarithms.

Next, we introduce the mixed α-divergence of a histogram x to two histograms p and q as follows:
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Definition 2 (Mixed α-divergence) The mixed α-divergence of a histogram x to two histograms p and
q is defined by:

Mλ,α(p : x : q) = λDα(p : x) + (1− λ)Dα(x : q), (15)

= λD−α(x : p) + (1− λ)D−α(q : x), (16)

= M1−λ,−α(q : x : p), (17)

The α-Jeffreys symmetrized divergence is obtained for λ = 1
2
:

Sα(p, q) = M 1
2
,α(q : p : q) = M 1

2
,α(p : q : p).

The skew symmetrized α-divergence is defined by:

Sλ,α(p : q) = λDα(p : q) + (1− λ)Dα(q : p).

1.4. Notations and paper overview

In this paper, we investigate two kinds of k-means clustering for sets of histograms:

• Sided mixed clustering and coupled k-means with respect to mixed divergences Mλ,α.

• Symmetrized α-clustering: k-means with respect to symmetrized divergences Sλ,α.

Throughout the paper, superscript index i denotes the histogram bin numbers and subscript index j the
histogram numbers. Index l is used to iterate on the clusters. The left-sided, right-sided and symmetrized
histogram positive and frequency α-centroids are denoted by lα, rα, sα and l̃α, r̃α, s̃α, respectively.

The paper is organised as follows: Section 2 describes the α-seeding techniques and report a
probabilistically guaranteed bound on the clustering quality. Section 3 investigates the various
sided/symmetrized/mixed calculations of the α-centroids. Section 4 presents the soft α-clustering with
respect to α-mixed divergences. Finally, Section 5 summarises the contributions, discusses on related
topics and hint at further perspectives. The paper is followed by two appendices. Appendix 5 studies
several properties of α-divergences that are used to derive the guaranteed probabilistic performance
of the α-seeding. Appendix 5 proves that α-sided centroids are quasi-arithmetic means for the power
generator functions.

2. Coupled k-means++ α-seeding

It is well-known that Lloyd k-means clustering algorithm monotonically decreases the loss function
and stops after a finite number of iterations into a local optimal. Optimizing globally the k-means
loss is NP-hard [24] when d > 1 and k > 1. In practice, the performance of the k-means algorithm
heavily relies on the initialization. A breakthrough was obtained by the k-means++ seeding [24] which
guarantees in expectation a good starting partition. We extend this scheme to the coupled α-clustering.
However, we point out that although k-means++ prove popular and is often used in practice with very
good results, it has been recently pointed out that “worst case” configurations exist and even in small
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Algorithm 2: Mixed α-seeding – MAS(H, k, λ, α)
Input: Weighted histogram setH, integer k ≥ 1, real λ ∈ [0, 1], real α ∈ R;
Let C ← hj with uniform probability ;
for i = 2, 3, ..., k do

Pick at random histogram h ∈ H with probability:

πH(h)
.

=
whMλ,α(ch : h : ch)∑
y∈HwyMλ,α(cy : y : cy)

, (18)

//where (ch, ch)
.

= arg min(z,z)∈CMλ,α(z : h : z);
C ← C ∪ {(h, h)};

Output: Set of initial cluster centers C;

dimensions, on which the algorithm cannot beat significantly its expected approximability with high
probability [25]. Still, the expected approximability ratio, roughly in O(log(k)), is very good as long as
the number of clusters is not too large.

Algorithm 2 provides our adaptation of k-means++ seeding [18,24]. It works for all our three of our
sided/symmetrized and mixed clustering settings:

• Pick λ = 1 for the left-sided centroid initialization,

• Pick λ = 0 for the right-sided centroid initialization (a left-sided initialization for −α),

• with arbitrary λ, for the λ-Jα (skew Jeffreys) centroids or mixed λ centroids. Indeed, the
initialization is the same (see the MAS procedure in Algorithm 2).

Our proof follows and generalizes the proof described for the case of mixed Bregman seeding [18]
(Lemma 2). In fact, our proof is more precise as it quantifies the expected potential with respect to the
optimum only, whereas in [18], the optimal potential is averaged with a dual optimal potential, which
depends on the optimal centers but may be larger than the optimum sought.

Theorem 1 Let Cλ,α denote for short the cost function related to the clustering type chosen (left-, right-,
skew Jeffreys or mixed) in MAS, and Copt

λ,α denote the optimal related clustering in k clusters, for λ ∈
[0, 1] and α ∈ (−1, 1). Then, on average with respect to distribution (18), the initial clustering of
MAS satisfies:

Eπ[Cλ,α] ≤ 4

{
f(λ)g(k)h2(α)Copt

λ,α if λ ∈ (0, 1)

g(k)z(α)h4(α)Copt
λ,α otherwise

. (19)

Here, f(λ) = max
{

1−λ
λ
, λ

1−λ

}
, g(k) = 2(2 + log k), z(α) =

(
1+|α|
1−|α|

) 8|α|2

(1−|α|)2
, h(α) =

maxi p
|α|
i /mini p

|α|
i and the min is defined on strictly positive coordinates, and π denotes the picking

distribution of Algorithm 2.

Remark 2 The bound is particularly good when λ is close to 1/2, and in particular for the α-Jeffreys
clustering, as in these cases the only additional penalty compared to the Euclidean case [24] is h2(α),
penalty that relies on an optimal triangle inequality for α-divergences that we provide in Lemma 8 below.
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Algorithm 3: Mixed α-Hard Clustering – MAhC(H, k, λ, α)
Input: Weighted histogram setH, integer k > 0, real λ ∈ [0, 1], real α ∈ R;
Let C = {(li, ri)}ki=1 ← MAS(H, k, λ, α);
repeat

//Assignment
for i = 1, 2, ..., k do
Ai ← {h ∈ H : i = arg minjMλ,α(lj : h : rj)};

// Centroid relocation
for i = 1, 2, ..., k do

ri ←
(∑

h∈Ai wih
1−α
2

) 2
1−α

;

li ←
(∑

h∈Ai wih
1+α
2

) 2
1+α

;

until convergence;
Output: Partition ofH in k clusters following C;

Remark 3 This guaranteed initialization is particularly useful for α-Jeffreys clustering, as there is no
closed form solution for the centroids (except when α = ±1, see [26]).

Algorithm 3 presents the general hard mixed k-means clustering which can be adapted also to left-
(λ = 1), right- (λ = 0) α-clustering.

For skew Jeffreys centers, since the centroids are not available in closed-form [26], we adopt a
variational approach of k-means by updating iteratively the centroid in each cluster (thus improving the
overall loss function without computing the optimal centroids that would eventually require infinitely
many iterations).

3. Sided, symmetrized, and mixed α-centroids

The k-means clustering requires to assign data elements to their closest cluster center, and then to
update those cluster centers by taking their centroids. This Section investigates the centroid computations
for the sided, symmetrized and mixed α-divergences.

Note that the mixed α-seeding presented in Section 2 does not require to compute centroids, and yet
guarantees probabilistically a good clustering partition.

Since mixed α-divergences are f -divergences, we start with the generic f -centroids.

3.1. Csiszár f -centroids The centroids induced by f -divergences of a set of positive measures (that

relaxes the normalisation constraint) have been studied by Ben-Tal et al. [27]. Those entropic centroids
are shown to be unique since f -divergences are convex statistical distances in both arguments. Let Ef
denote the energy to minimize when considering f -divergences:
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Ef
.

= min
x∈X

If (H : x) =
n∑
j=1

wjIf (hj : x), (20)

= min
x∈X

n∑
j=1

wj

d∑
i=1

pijf

(
ci

hij

)
. (21)

When the domain is the open probability simplex X = ∆d, we get a constrained optimisation
problem to solve. We transform this constrained minimisation problem (i.e., x ∈ ∆d) into an equivalent
unconstrained minimisation problem by using the Lagrange multiplier γ:

min
x∈Rd

n∑
j=1

wjIf (hj : c) + γ

(
d∑
i=1

xi − 1

)
. (22)

Taking the derivatives according to xi, we get:

∀i ∈ {1, ..., d},
n∑
j=1

wjf
′
(
xi

hij

)
− γ = 0. (23)

We now consider this equation for α-divergences and symmetrized α-divergences, both f -
divergences.

3.2. Sided positive and frequency α-centroids

The positive sided α-centroids for a set of weighted histograms were reported in [28] using the
representation Bregman divergence. We summarise the results in the following theorem:

Theorem 2 (Sided positive α-centroids [28]) The left-sided lα and right-sided rα positive weighted α-
centroid coordinates of a set of n positive histograms h1, ..., hn are weighted α-means:

riα = f−1
α

(
n∑
j=1

wjfα(hij)

)
, liα = ri−α

with fα(x) =

{
x

1−α
2 α 6= ±1,

log x α = 1.

Furthermore, the frequency sided α-centroids are simply the normalized sided α-centroids.

Theorem 3 (Sided frequency α-centroids [29]) The coordinates of the sided frequency α-centroids of
a set of n weighted frequency histograms are the normalised weighted α-means.

Table 1 summarizes the results concerning the sided positive and frequency α-centroids.
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Table 1. Positive and frequency α-centroids: The frequency α-centroids are normalized
positive α-centroids, where w(h) denotes the cumulative sum of the histogram bins. The
arithmetic mean is obtained for r−1 = l1 and the geometric mean for r1 = l−1.

Positive centroid Frequency centroid

Right-sided centroid riα =

{
(
∑n

j=1wj(h
i
j)

1−α
2 )

2
1−α α 6= 1

ri1 =
∏n

j=1(hij)
wj α = 1

r̃iα = riα
w(r̃α)

Left-sided centroid liα = ri−α =

{
(
∑n

j=1wj(h
i
j)

1+α
2 )

2
1+α α 6= −1

li−1 =
∏n

j=1(hij)
wj α = −1

l̃iα = r̃i−α =
ri−α

w(r̃−α)

Figure 1. Snapshot of the α-clustering software. Here, n = 800 frequency histograms of 3

bins with k = 8, and α = 0.7 and λ = 1
2
.

3.3. Mixed α-centroids

The mixed α-centroids for a set of n weighted histograms is defined as the minimizer of:

∑
j

wjMλ,α(l : hj : r). (24)

We state the theorem generalizing [18]:

Theorem 4 The two mixed α-centroids are the left-sided and right-sided α-centroids.

Figure 1 depicts some clustering result with our α-clustering software. Remark that the clusters found
are all approximately subclusters of the “distinct” clusters that appear on the figure. When those distinct
clusters are actually the optimal clusters — which is likely to be the case when they are separated by
large minimal distance to other clusters —, this is clearly a desirable qualitative property as long as the
number of experimental clusters is not too large compared to the number of optimal clusters. Remark
also that in the experiment displayed, there is no closed form solution for the cluster centers.
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3.4. Symmetrized Jeffreys-type α-centroids

The Kullback-Leibler divergence can be symmetrized in various ways: Jeffreys divergence, Jensen-
Shannon divergence and Chernoff information just to mention a few. Here, we consider the following
symmetrization of α-divergences extending Jeffreys J-divergence:

Sα(p, q) =
1

2
(Dα(p : q) +Dα(q : p)) = S−α(p, q), (25)

= M 1
2
(p : q : p), (26)

For α = ±1, we get half of Jeffreys divergence:

S±1(p, q) =
1

2

d∑
i=1

(pi − qi) log
pi

qi

In particular, when p and q are frequency histograms, we have for α 6= ±1:

Jα(p̃ : q̃) =
8

1− α2

(
1 +

d∑
i=1

H 1−α
2

(p̃i, q̃i)

)
, (27)

where H 1−α
2

(a, b) a symmetric Heinz mean [30,31]:

Hβ(a, b) =
aβb1−β + a1−βbβ

2
.

Heinz means interpolate4 the arithmetic and geometric means, and satisfies the inequality:

√
ab = H 1

2
(a, b) ≤ Hα(a, b) ≤ H0(a, b) =

a+ b

2
.

The Jα-divergence is a Csiszár f -divergence [16,17].
Observe that it is enough to consider α ∈ [0,∞) and that the symmetrized α-divergence for positive

and frequency histograms coincide only for α = ±1.
For α = ±1, Sα(p, q) tends to the Jeffreys divergence:

J(p, q) = KL(p, q) + KL(q, p) =
d∑
i=1

(pi − qi)(log pi − log qi). (28)

The Jeffreys divergence writes mathematically the same for frequency histograms:

J(p̃, q̃) = KL(p̃, q̃) + KL(q̃, p̃) =
d∑
i=1

(p̃i − q̃i)(log p̃i − log q̃i). (29)

We state the results reported in [26]:

4 Another interesting property of Heinz means is the integral representation of the logarithmic mean: L(x, y) =
x−y

log x−log y =
∫ 1

0
Hβ(x, y)dβ. This allows to prove easily that

√
xy ≤ L(x, y) ≤ x+y

2 .
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Theorem 5 (Jeffreys positive centroid [26]) The Jeffreys positive centroid c = (c1, ..., cd) of a set
{h1, ..., hn} of n weighted positive histograms with d bins can be calculated component-wise exactly
using the Lambert W analytic function:

ci =
ai

W (a
i

gi
e)
,

where ai =
∑n

j=1 πjh
i
j denotes the coordinate-wise arithmetic weighted means and gi =

∏n
j=1(hij)

πj

the coordinate-wise geometric weighted means.

The Lambert analytic function W [32] (positive branch) is defined by W (x)eW (x) = x for x ≥ 0.

Theorem 6 (Jeffreys frequency centroid [26]) Let c̃ denote the Jeffreys frequency centroid and c̃′ = c
wc

the normalised Jeffreys positive centroid. Then the approximation factor αc̃′ = S1(c̃′,H̃)

S1(c̃,H̃)
is such that

1 ≤ αc̃′ ≤ 1
wc

(with wc ≤ 1).

Therefore, we shall consider α 6= ±1 in the remainder.
We state the following lemma generalizing the former results in [33] that were tailored to the

symmetrized Kullback-Leibler divergence or the symmetrized Bregman divergence [34]:

Lemma 1 (Reduction property) The symmetrized Jα-centroid of a set of n weighted histograms
amount to compute the symmetrized α-centroid for the weighted α-mean and −α-mean:

min Jα(x,H) = min
x

(Dα(x : rα) +Dα(lα : x)) .

Proof It follows that the minimization problem minx Sα(x,H) =
∑n

j=1 wjSα(x, hj) reduces to the
following minimization:

min
d∑
i=1

xi − (xi)
1+α
2 h̄iα − (xi)

1−α
2 h̄i−α. (30)

This is equivalent to minimizing:

≡
d∑
i=1

xi − (xi)
1+α
2 ((h̄iα)

2
1−α )

1−α
2 −

(xi)
1−α
2 ((h̄i−α)

2
1+α )

1+α
2 ,

≡
d∑
i=1

xi − (xi)
1+α
2 (riα)

1−α
2 − (xi)

1−α
2 (liα)

1+α
2

≡ Dα(x : rα) +Dα(lα : x).

Note that α = ±1, the lemma states that the minimization problem is equivalent to minimize KL(a :

x) + KL(x : g) with respect to x, where a = l1 and g = r1 denotes the arithmetic and geometric means,
respectively.

The lemma states that the optimization problem with n weighted histograms is equivalent to the
optimization with only two equally weighted histograms.

The positive symmetrized α-centroid is equivalent to computing a representation symmetrized
Bregman centroid [28,34].
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The frequency symmetrized α-centroid asks to minimize the following problem:

min
x̃∈∆d

∑
j

wjSα(x̃, h̃i).

Instead of seeking for x̃ in the probability simplex, we can optimize on the unconstrained domain Rd−1

by using a reparameterization. Indeed, frequency histograms belong to the exponential families [35]
(multinomials).

Exponential families also include many other continuous distributions like the Gaussian, Beta or
Dirichlet distributions. It turns out the α-divergences can be computed in closed-form for members of
the same exponential family:

Lemma 2 The α-divergence for distributions belonging to the same exponential families amounts to
compute a divergence on the corresponding natural parameters:

Aα(p : q) =
4

1− α2

(
1− e−J

( 1−α
2 )

F (θp:θq)

)
,

where JβF (θ1 : θ2) = βF (θ1)+(1−β)F (θ2)−F (βθ1 +(1−β)θ2) is a skewed Jensen divergence defined
for the log-normaliser F of the family.

The proof follows from the fact that
∫
pα(x)q1−α(x)dx = e−J

(α)(θp:θq)

F , see [36].
First, we convert a frequency histogram h̃ to its natural parameter θ with θi = log h̃i

h̃d
, see [35].

The log-normaliser is a non-separable convex function F (θ) = log(1 +
∑

i e
θi). To convert back a

multinomial to a frequency histogram with d bins, we first set h̃d = 1

1+
∑d−1
l=1 e

θl
, and then retrieve the

other bin values as h̃i = h̃deθ
i .

The centroids with respect to skewed Jensen divergences has been investigated in [36,37].

Remark 4 Note that for the special case of α = 0 (squared Hellinger centroid), the sided and
symmetrized centroids coincide. In that case, the coordinates si0 of the squared Hellinger centroid are:

si0 =

(
n∑
j=1

wj

√
hij

)2

, 1 ≤ i ≤ d.

Remark 5 The symmetrized positive α-centroids can be solved in special cases (α = ±3, α = ±1

corresponding to the symmetrized χ2 and Jeffreys positive centroids). For frequency centroids, when
dealing with binary histograms (d = 2), we have only one degree of freedom, and can solve the binary
frequency centroids. Binary histograms (and mixtures thereof) are used in computer vision and pattern
recognition [38].

Remark 6 Since α-divergences are Csiszár f -divergences, and f -divergences can always be sym-
metrized by taking generator s(t) = f(t) + tf(1

t
), we deduce that symmetrized α-divergences Sα are

f -divergences for the generator:

f(t) = − log((1− α) + αt)− t log((1− α) +
α

t
).

Hence Sα divergences are convex in both arguments, and the sα centroids are unique.
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Algorithm 4: Mixed α-Soft Clustering – MAsC(H, k, λ, α)
Input: Histogram setH with |H| = m, integer k > 0, real λ← λinit ∈ [0, 1], real α ∈ R;
Let C = {(li, ri)}ki=1 ← MAS(H, k, λ, α);
repeat

//Expectation
for i = 1, 2, ...,m do

for j = 1, 2, ..., k do
p(j|hi) =

πj exp(−Mλ,α(lj :hi:rj))∑
j′ πj′ exp(−Mλ,α(lj′ :hi:rj′ ))

;

//Maximization
for j = 1, 2, ..., k do

πj ← 1
m

∑
i p(j|hi);

li ←
(

1∑
i p(j|hi)

∑
i p(j|hi)h

1+α
2

i

) 2
1+α

;

ri ←
(

1∑
i p(j|hi)

∑
i p(j|hi)h

1−α
2

i

) 2
1−α

;

//Alpha - Lambda
α← α− η1

∑k
j=1

∑m
i=1 p(j|hi)

∂
∂α
Mλ,α(lj : hi : rj);

if λinit 6= 0, 1 then
λ← λ− η2

(∑k
j=1

∑m
i=1 p(j|hi)Dα(lj : hi)−∑k

j=1

∑m
i=1 p(j|hi)Dα(hi : rj)

)
;

//for some small η1, η2; ensure that λ ∈ [0, 1].

until convergence;
Output: Soft clustering ofH according to k densities p(j|.) following C;

4. Soft mixed α-clustering

Algorithm 4 reports the general clustering with soft membership which can be adapted to left- (λinit =

1), right- (λinit = 0) or mixed clustering. We have not considered a weighted histogram set in order not
to laden the notations, and because the extension is straightforward.

Again, for skew Jeffreys centers, we shall adopt a variational approach. Notice that the soft clustering
approach learns all parameters, including λ (if not constrained to 0 or 1) and α ∈ R. This is not the case
for Matsuyama’s α-Expectation Maximization (EM) algorithm [39] in which α is fixed beforehand (and
thus not learned).

Assuming we model the prior for histograms by:

pλ,α,j(hi) ∝
λ exp−Dα(lj : hi) + (1− λ) exp−Dα(hi : rj) , (31)

the negative log-likelihood involves the α-depending quantity:



Entropy 2013, xx 16

k∑
j=1

m∑
i=1

p(j|hi) log pλ,α,j(hi) ≥ (32)

k∑
j=1

m∑
i=1

Mλ,α(lj : hi : rj)p(j|hi), (33)

because of the concavity of the logarithm function So the maximization step for α involves finding:

arg max
α

k∑
j=1

m∑
i=1

Mλ,α(lj : hi : rj)p(j|hi) . (34)

No closed-form solution are known, so we compute the gradient update in Algorithm 4 with:

∂Mλ,α(lj : hi : rj)

∂α
=

λ
∂Dα(lj : hi)

∂α
+ (1− λ)

∂Dα(hi : rj)

∂α
, (35)

∂Dα(p : q)

∂α
=

2

(1− α)2
×(

q −
(

1− α
1 + α

)2

p+ p
1−α
2 q

1+α
2

(
4α

1− α2
− ln

(
q

p

)))
. (36)

The update in λ is easier as:

∂Mλ,α(lj : hi : rj)

∂λ
= Dα(lj : hi)−Dα(hi : rj) . (37)

Maximizing the likelihood in λ would imply choosing λ ∈ {0, 1} (hard choice for left/right centers), yet
we prefer the soft update for the parameter, like for α.

5. Conclusion

The family of α-divergences plays a fundamental role in information geometry: These statistical
distortion measures are the canonical divergences of dually constant curvature spaces on probability
distribution manifolds, and the canonical divergences of dually flat manifolds for positive distribution
manifolds [40].

In this work, we have presented three techniques for clustering (positive or frequency) histograms
using k-means:

1. Sided left or right α-centroid k-means,

2. Symmetrized Jeffreys-type α-centroid k-means, and

3. Coupled k-means with respect to mixed α-divergences relying on dual α-centroids.
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Sided and mixed centroids are always available in closed-forms and are therefore highly attractive
from the standpoint of implementation. Symmetrized Jeffreys centroids are in general not available
in closed-form and requires to implement a variational k-means by updating incrementally the cluster
centroids in order to monotonically decrease the loss function. From the clustering standpoint, this
appears not to be a problem when guaranteed expected approximations to the optimal clustering are
enough.

Indeed, we also presented and analysed an extension of k-means++ [24] for seeding those k-means
algorithms. The mixed α-seeding initialisations do not require to calculate centroids and behaves like
a discrete k-means by picking up the seeds among the data. We reported guaranteed probabilistic
clustering bounds. Thus it yields a fast hard/soft data partitioning techniques with respect to mixed
or symmetrized α-divergences. Recently, the advantage of clustering using α-divergences by tuning α
in applications has been demonstrated in [9]. We thus expect the computationally fast mixed α-seeding
with guaranteed performance to be useful in a growing number of applications.

Proofsketch of Theorem 1
We give here the key results allowing to obtain the proof of the Theorem, following the proof scheme

of [18]. In order not to laden notations, weights are considered uniform. The extension to non-uniform
weights is immediate as it boils down to duplicate histograms in the histogram set, and does not change
the approximation result.

Let A ⊆ H be an arbitrary cluster of Copt. Let us define UA and πA as the uniform and biased
distributions conditioned to A. The key to the proof is to relate the expected potential of A under UA
and πA to its contribution to the optimal potential.

Lemma 3 Let A ⊆ H be an arbitrary cluster of Copt. Then

Ec∼UA [Mλ,α(A, c)] = Mopt,λ,α(A) +Mopt,λ,−α(A)

= Ec∼UA [Mλ,−α(A, c)] ,

where UA is the uniform distribution over A.

Proof α-coordinates have the property that for any subset A ⊆ H, (1/|A|)
∑

p∈A uα(p) = uα(rα,A).
Hence, we have:

∀c ∈ A ,
∑
p∈A

Dα(p : c)

=
∑
p∈A

Dϕα(uα(p) : uα(c))

=
∑
p∈A

Dϕα(uα(p) : uα(rα,A)) + |A|Dϕα(uα(rα,A) : uα(c))

=
∑
p∈A

Dα(p : rα,A) + |A|Dα(rα,A : c) . (38)
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Because Dα(p : q) = D−α(q : p) and lα = r−α, we obtain:

∀c ∈ A ,
∑
p∈A

Dα(c : p)

=
∑
p∈A

D−α(p : c)

=
∑
p∈A

D−α(p : r−α,A) + |A|D−α(r−α,A : c)

=
∑
p∈A

Dα(lα,A : p) + |A|Dα(c : lα,A) . (39)

It comes now from (38) and (39) that:

Ec∼UA [Mλ,α(A, c)]

=
1

|A|
∑
c∈A

∑
p∈A

{λDα(c : p) + (1− λ)Dα(p : c)} (40)

= (1− λ)
∑
p∈A

Dα(p : rα,A) + (1− λ)
∑
p∈A

Dα(rα,A : p)

+λ
∑
p∈A

Dα(lα,A : p) + λ
∑
p∈A

Dα(p : lα,A)

= (1− λ)Mopt,0,α(A) + λMopt,1,α(A)

+(1− λ)Mopt,0,−α(A) + λMopt,1,−α(A)

= Mopt,λ,α(A) +Mopt,λ,−α(A) .

This gives the left-hand side equality of the Lemma. The right-hand side follows from the fact that
Ec∼UA [Mλ,−α(A, c)] = Mopt,1−λ,α(A) +Mopt,1−λ,−α(A).

Instead of Mopt,λ,α(A) + Mopt,λ,−α(A), we want a term depending solely on Mopt,λ,α(A) as it is the
“true” optimum. We now give two lemmata that shall be useful in obtaining this upperbound. The first is
of independent interest as it shows that any α-divergence is a scaled squared Hellinger distance between
geometric means of points.

Lemma 4 For any p, q and α 6= 1, there exists r ∈ [p, q] such that (1 − α)2Dα(p : q) = D0(p1−αrα :

q1−αrα).

Proof By the definition of Bregman divergences, for any x, y, there exists some z ∈ [x, y] such that:

Dϕα(x : y) =
1

2
(x− y)2ϕ”α(z)

=
1

2
(x− y)2

(
1 +

1− α
2

z

) 2α
1−α

,
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and since uα is continuous and strictly increasing, for any p, q, there exists some r ∈ [p, q] such that:

Dα(p : q)

= Dϕα(uα(p) : uα(q))

=
1

2
(uα(p)− uα(q))2

(
1 +

1− α
2

uα(r)

) 2α
1−α

=
2

(1− α)2

(
p

1−α
2 − q

1−α
2

)2

rα

=
2

(1− α)2

(
p1−α + q1−α − 2(pq)

1−α
2

)
rα

=
1

(1− α)2
D0(p1−αrα : q1−αrα) .

Lemma 5 Let discrete random variable x take non negative values x1, x2, ..., xm with uniform
probabilities. Then, for any β > −1, we have var(x1+β/uβ) ≤ var(x), with u .

= (1 + β)β maxi xi.

Proof First, ∀β > −1, remark that for any x, function f(x) = x(uβ − xβ) is increasing for x ≤
u/(1 + β)β . Hence, assuming that the xis are put in non-increasing order without loss of generality, we
have f(xi) ≥ f(xj) and so xi(uβ − xβi ) ≥ xj(u

β − xβj ),∀i ≥ j, as long as xi ≤ u/(1 + β)β . Choosing
u = x1(1 + β)β yields after reordering and putting the exponent, (x1+β

i − x1+β
j )2 ≤ (xiu

β − xju
β)2.

Hence,

1

m

∑
i

x
2(1+β)
i −

(
1

m

∑
i

x
(1+β)
i

)2

=
1

2m2

∑
i,j

(x1+β
i − x1+β

j )2

≤ 1

2m2

∑
i,j

(xiu
β − xjuβ)2

=
u2β

2m2

∑
i,j

(xi − xj)2

= u2β

 1

m

∑
i

x2
i −

(
1

m

∑
i

xi

)2
 .

Dividing by u2β the leftmost and rightmost terms and using the fact that var(λx) = λ2var(x) yields the
statement of the Lemma.

We are now ready to upperbound Mopt,λ,−α(A) as a function of Mopt,λ,α(A).

Lemma 6 For any cluster A of Copt,

Mopt,λ,−α(A) ≤ Mopt,λ,α(A)×

{
f(λ) if λ ∈ (0, 1)

z(α)h2(α) otherwise
,

where z(α), f(λ) and h(α) are defined in Theorem 1.
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Proof The case λ 6= 0, 1 is fast as we have by definition

Mopt,λ,−α(A) =
∑
p∈A

λD−α(l−α,A : p) + (1− λ)D−α(p : r−α,A)

=
∑
p∈A

λDα(p : l−α,A) + (1− λ)Dα(r−α,A : p)

=
∑
p∈A

λDα(p : rα,A) + (1− λ)Dα(lα,A : p)

≤ max

{
1− λ
λ

,
λ

1− λ

}
Mopt,λ,α(A)

= f(λ)Mopt,λ,α(A) .

Suppose now that λ = 0 and α ≥ 0. Because Mopt,0,−α(A) =
∑

p∈AD−α(p : r−α,A) =∑
p∈ADα(lα,A : p) = Mopt,1,α(A), what we wish to do is upperbound

∑
p∈ADα(lα,A : p) = Mopt,1,α(A)

as a function of
∑

p∈ADα(p : rα,A) = Mopt,0,α(A). We use Lemmata 4 and 5 in the following
derivations, using r(p) to refer to the r in Lemma 4, assuming α ≥ 0. We also note varA(f(p)) as
the variance, under the uniform distribution over A, of discrete random variable f(p), for p ∈ A. We
have: ∑

p∈A

Dα(lα,A : p)

=
∑
p∈A

D−α(p : lα,A)

=
1

(1 + α)2

∑
p∈A

r(p)−αD0(p1+α : l1+α
α,A )

≤ 1

(1 + α)2 minA pα

∑
p∈A

D0(p1+α : l1+α
α,A )

=
1

(1 + α)2 minA pα

∑
p∈A

(
p1+α + l1+α

α,A − 2p
1+α
2 l

1+α
2

α,A

)

=
|A|

(1 + α)2 minA pα

 1

|A|
∑
p∈A

p1+α −

(
1

|A|
∑
p∈A

p
1+α
2

)2


=
|A|varA(p

1+α
2 )

(1 + α)2 minA pα
. (41)
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We have used the expression of left centroid l1+α
α,A to simplify the expressions. Now, picking xi = p

1−α
2

i ,

β = 2α/(1− α) and u =
(

1+α
1−α

) 2α
1−α maxA p

1−α
2 in Lemma 5 yields:

varA(p
1+α
2 )

= u2βvarA(p
1+α
2 /uβ)

= u2βvarA

(
p

1−α
2 pα/uβ

)
= u2βvar(x1+β/uβ)

≤ u2βvar(x)

= u2βvarA

(
p

1−α
2

)
=

(
1 + α

1− α

) 8α2

(1−α)2

max
A

p2αvarA

(
p

1−α
2

)
.

Plugging this in (41) yields:∑
p∈A

Dα(lα,A : p)

≤
(

1 + α

1− α

) 8α2

(1−α)2 |A|maxA p
2αvarA

(
p

1−α
2

)
(1 + α)2 minA pα

=

(
1 + α

1− α

) 8α2

(1−α)2
−2(

maxA p

minA p

)2α

× |A|minA p
αvarA(p

1−α
2 )

(1− α)2

=

(
1 + α

1− α

) 8α2

(1−α)2
−2(

maxA p

minA p

)2α

× minA p
α

(1− α)2

∑
p∈A

D0(p1−α : r1−α
α,A ) (42)

≤
(

1 + α

1− α

) 8α2

(1−α)2
−2(

maxA p

minA p

)2α

× 1

(1− α)2

∑
p∈A

r(p)αD0(p1−α : r1−α
α,A )

=

(
1 + α

1− α

) 8α2

(1−α)2
−2(

maxA p

minA p

)2α

×
∑
p∈A

Dα(p : rα,A)

≤ z(α)

(
maxA p

minA p

)2α

×
∑
p∈A

Dα(p : rα,A) . (43)

Here, (42) follows the path backwards of derivations that lead to (41).The cases λ = 1 or α < 0 are
obtained using the same chains of derivations and achieve the proof of Lemma 6.

Lemma 6 can be directly used to refine the bound of Lemma 3 in the uniform distribution. We give the
Lemma for the biased distribution, directly integrating the refinement of the bound.

Lemma 7 Let A be an arbitrary cluster of Copt, and C an arbitrary clustering. If we add a random
couple (c, c) to C, chosen from A with π as in Algorithm 2, then

Ec∼πA [Mλ,α(A, c)]

≤ 4

{
f(λ)h2(α)Mopt,λ,α(A) if λ ∈ (0, 1)

z(α)h4(α)Mopt,λ,α(A) otherwise
, (44)
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where f(λ) and h(α) are defined in Theorem 1.

Proof The proof essentially follows the proof of Lemma 3 in [18]. To complete it, we need a triangle
inequality involving α-divergences. We give it here.

Lemma 8 For any p, q, r and α, we have:

√
Dα(p : q) ≤

(
maxi{pi, qi, ri}
mini{pi, qi, ri}

)|α| (√
Dα(p : r) +

√
Dα(r : q)

)
(45)

(where the min is over strictly positive values)

Remark — take α = 0: we find the triangle inequality for the squared Hellinger distance.

Proof Using the proof of Lemma 2 in [18] for Bregman divergence Dϕα , we get:√
Dϕα(x : z)

≤ ρ(α)

(√
Dϕα(x : y) +

√
Dϕα(y : z)

)
, (46)

where

ρ(α) = max
u,v

(
1 + 1−α

2
u
) 2α

1−α(
1 + 1−α

2
v
) 2α

1−α
. (47)

Taking x = uα(p), y = uα(q), z = uα(r) yields ρ(α) = maxs,t∈{pi,qi,ri}(s/t)
|α| and the statement of

Lemma 8.

The rest of the proof of Lemma 7 follows the proof of Lemma 3 in [18].

We get all the ingredients to our proof and there remains to use Lemma 4 in [18] to achieve the proof of
Theorem 1.

Properties of α-divergences
For positive arrays p and q, the α-divergence Dα(p : q) can be defined as an equivalent

representational Bregman divergence [28,40] Bϕα(uα(p) : uα(q)) over the (uα, vα)-structure [41] with:

ϕα(x)
.

=
2

1 + α

(
1 +

1− α
2

x

) 2
1−α

, (48)

uα(p)
.

=
2

1− α

(
p

1−α
2 − 1

)
, (49)

vα(p)
.

=
2

1 + α
p

1+α
2 , (50)

where we assume that α 6= ±1. Otherwise, for α = ±1, we compute Dα(p : q) by taking the sided
Kullback-Leibler divergence extended to positive arrays.

In the proof of Theorem 1, we have used two properties of α-divergences of independent interest:
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• any α-divergence can be explained as a scaled squared Hellinger distance between geometric
means of its arguments and a point that belong to their segment (Lemma 4);

• any α-divergence satisfies a generalized triangle inequality (Lemma 8). Notice that this Lemma is
optimal in the sense that for α = 0, it is possible to recover the triangle inequality of the Hellinger
distance.

The following Lemma shows how to bound the mixed divergence as a function of an α-divergence.

Lemma 9 For any positive arrays l, h, r and α 6= ±1, define η .
= λ(1 − α)/(1 − α(2λ − 1)) ∈ [0, 1],

and gη with giη
.

= (li)η(ri)1−η, and aη with aiη
.

= ηli + (1− η)ri. Then, we have:

Mλ,α(l : h : r) ≤ 1− α2(2λ− 1)2

1− α2
Dα(2λ−1)(gη : h)

+
2(1− α(2λ− 1))

1− α2

∑
i

(
aiη − giη

)
.

Proof For all index i, we have:

Mλ,α(li : hi : ri) = λDα(li : hi) + (1− λ)Dα(hi : ri)

=
4

1− α2

(
λ(1− α)

2
li +

(1− λ)(1 + α)

2
ri +

1 + α(2λ− 1)

2
hi (51)

−λ(li)
1−α
2 (hi)

1+α
2 − (1− λ)(ri)

1+α
2 (hi)

1−α
2

)
. (52)

The arithmetic-geometric-harmonic (AGH) inequality implies:

λ(li)
1−α
2 (hi)

1+α
2 + (1− λ)(ri)

1+α
2 (hi)

1−α
2 ≥ (li)

λ(1−α)
2 (ri)

(1−λ)(1+α)
2 (hi)

1+α(2λ−1)
2

=
(

(li)
λ(1−α)

1−α(2λ−1) (ri)
(1−λ)(1+α)
1−α(2λ−1)

) 1−α(2λ−1)
2

(hi)
1+α(2λ−1)

2

=
(
(li)η(ri)1−η) 1−α(2λ−1)

2 (hi)
1+α(2λ−1)

2

= (giη)
1−α(2λ−1)

2 (hi)
1+α(2λ−1)

2 .

It follows that (52) yields:

Mλ,α(li : hi : ri) ≤ 4

1− α2

(
1− α(2λ− 1)

2

(
ηli + (1− η)ri

)
+ (53)

1 + α(2λ− 1)

2
hi − (giη)

1−α(2λ−1)
2 (hi)

1+α(2λ−1)
2

)
=

1− α2(2λ− 1)2

1− α2
Dα(2λ−1)(g

i
η : hi) +

2(1− α(2λ− 1))

1− α2

(
aiη − giη

)
, (54)

out of which we get the statement of the Lemma.
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Sided α-centroids
For sake of completeness, we prove the following theorem:

Theorem 7 (Sided positive α-centroids [28]) The left-sided lα and right-sided rα positive weighted α-
centroid coordinates of a set of n positive histograms h1, ..., hn are weighted α-means:

riα = f−1
α

(
n∑
j=1

wjfα(hij)

)
, liα = ri−α

with

fα(x) =

{
x

1−α
2 α 6= ±1,

log x α = 1.

Proof We distinguish three cases: α 6= ±1, α = −1 and α = 1.

First, consider the general case α 6= ±1. We have to minimize:

Rα(x,H) =
4

1− α2

n∑
j=1

wj×

d∑
i=1

(
1− α

2
hij +

1 + α

2
xi − (hij)

1−α
2 (xi)

1+α
2

)
.

Removing all additive terms independent of xi and the overall constant multiplicative factor
4

1−α2 6= 0, we get the following equivalent minimisation problem:

R′α(x,H) =
d∑
i=1

1 + α

2
xi − (xi)

1+α
2

(
n∑
j=1

wj(h
i
j)

1−α
2

)
︸ ︷︷ ︸

h̄iα

, (55)

where h̄iα denote the following aggregation term:

h̄iα =
n∑
j=1

wj(h
i
j)

1−α
2 .

Setting coordinate-wise the derivative to zero of Eq. 55 (i.e.,∇xR
′(x,H) = 0), we get:

1 + α

2
− 1 + α

2
(xi)

α−1
2 h̄iα = 0

Thus, we find that coordinates of the right-sided α-centroids are:

ciα = (h̄iα)
2

1−α =

(
n∑
j=1

wj(h
i
j)

1−α
2

) 2
1−α

= ĥiα.
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We recognise the expression of a quasi-arithmetic mean5 for the strictly monotonous generator
fα(x):

riα = f−1
α

(
n∑
j=1

wjfα(hij)

)
, (56)

with
fα(x) = x

1−α
2 , f−1

α (x) = x
2

1−α , α 6= ±1.

Therefore we conclude that the coordinates of the positive α-centroid are the weighted α-means
of the histogram coordinates (for α 6= ±1).

•• When α = −1, we search for the right-sided extended Kullback-Leibler divergence centroid by
minimising:

R−1(x; H̃) =
n∑
j=1

wj

d∑
i=1

hij log
hij
xi

+ xi − hij.

It is equivalent to minimize:

R′−1(x; H̃) =
d∑
i=1

xi −

(
n∑
j=1

wjh
i
j

)
︸ ︷︷ ︸

a

log xi,

where a denotes the arithmetic mean. Solving coordinate-wise, we get ci = ai =
∑n

j=1wjh
i
j .

• When α = 1, the right-sided reverse extended KL centroid is a left-sided extended KL centroid.
The minimisation problem is:

R1(x; H̃) =
n∑
j=1

wj

d∑
i=1

xi log
xi

hij
+ hij − xi.

Since
∑

j wj = 1, we solve coordinate-wise and find log x =
∑

j wj log hj . That, is ri1 is the
geometric mean:

ri1 =
n∏
j=1

(hij)
wj .

Both the arithmetic mean and the geometric mean are power means in the limit case (and hence
quasi-arithmetic means). Thus,

riα = f−1
α

(
n∑
j=1

wjfα(hij)

)
, (57)

with

fα(x) =

{
x

1−α
2 α 6= ±1,

log x α = 1.

5 Also called in the literature, quasi-linear means or f -means.
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