A Real Generalization of Discrete AdaBoost

Richard Nock¹ Frank Nielsen²

¹Université Antilles-Guyane CEREGMIA, Martinique, France Richard.Nock@martinique.univ-ag.fr

²Sony CS Labs, Inc. Fundamental Res. Lab., Tokyo, Japan Frank.Nielsen@acm.org

August 2006

< 同 > < 三 > < 三 >

- Learning (Weak, Strong, and Boosting);
- Discrete and Real AdaBoosts;
- Lifting to ℝ: Margins & our generalization of discrete AdaBoost;
- Properties;
- Experiments;
- Conclusion.

R. Nock and F. Nielsen A I eal Generalization of Discrete AdaBoost

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Learning: Setting

Problem

Given: $|\mathcal{X}|$, a domain of **observations** (e.g. \mathbb{R}^n , $\{0,1\}^n$); n =number of description variables;

 $\{-1,+1\}$, a set of **classes** (e.g. {bad, good}, {lose, win}); "-1" = negative class; "+1" = positive class;

we wish to learn a particular binary relation from \mathcal{X} to $\{-1, +1\}$ (e.g. $\mathcal{X} =$ endgame configurations, classes = {lose, win}).

Framework:

- draw a set of *m* examples $S = \{(\mathbf{x}, \mathbf{y}) \in \mathcal{X} \times \{-1, +1\}\}$ according to distribution D (unknown but fixed);
- learn a classifier $H : \mathcal{X} \to \mathbb{R}$, so as to minimize its **true risk** with high probability (+ require learning P-time in relevant parameters).

Learning: Weak/Strong

True risk minimization whp (weak/strong learning)

Let $\epsilon_{D,H} = \Pr(\mathbf{x}, \mathbf{y}) \sim D[sign(H(\mathbf{x})) \neq \mathbf{y}]$ be the true risk of *H*.

Strong: require $\Pr_{S \sim D^m}[\epsilon_{D,H} \leq \varepsilon] \geq 1 - \delta$ (ε, δ user-fixed);

Weak: require $\Pr_{S \sim D^m}[\epsilon_{D,H} \leq 1/2 - \gamma] \geq \delta'$ (γ, δ' very small: *e.g.* tiny constant, $\approx 1/p(n)$, etc.);

(requirements hold $\forall D, \forall 0 < \varepsilon, \delta < 1$).

Strong learning is learning as usual.

Weak learning is the "weakest", as $\epsilon_{D,\text{unbiased coin}} = 1/2, \forall D$.

Fundamental result (Boosting property, Schapire'90)

Weak learning \implies Strong learning , *i.e.* given algorithm WL that weak learns, we can build algorithm SL that strong learns with the **sole** access to WL.

Empirical Risks & Strong Learning

Sufficient conditions for Strong Learning

Let w_1 be the observed distribution on S, and $\epsilon_{w_1,H}$ the empirical risk of H: $\epsilon_{w_1,H} = \mathbf{E}_{(\mathbf{x},y)\sim w_1}(1_{sign(H(\mathbf{x}))\neq y})$ $(1_{\pi} = 1$ if π is true, and 0 otherwise). Modulo additional conditions, $\epsilon_{w_1,H} = 0$ (*H* consistent with S) \Rightarrow Strong Learning

The direct minimization of $\epsilon_{w_1,H}$ has drawbacks (not smooth, many potential local minima, Hardness issues).

Solution: minimize a convex, smooth upperbound

Let $\epsilon_{\mathbf{w}_{1},H}^{\exp} = E_{(\mathbf{x},y)\sim\mathbf{w}_{1}}(\exp(-yH(\mathbf{x})))$ be the **exponential loss**. Advantage 1 : $\epsilon_{\mathbf{w}_{1},H}^{\exp}$ is convex and smooth differentiable. Advantage 2 : $\epsilon_{\mathbf{w}_{1},H} \leq \epsilon_{\mathbf{w}_{1},H}^{\exp}$, as $1_{sign(H(\mathbf{x}))\neq y} \leq \exp(-yH(\mathbf{x}))$. Advantage 3 : $\epsilon_{\mathbf{w}_{1},H}^{\exp}$ takes full advantage that $H(\mathbf{x}) \in \mathbb{R}$.

AdaBoost (FS'97, KW'99, SS'99)

Problem

Fix $H = H_T$ a linear combination of T classifiers (h_t) from WL: $H_T(\mathbf{x}) = \sum_{t=1}^T \alpha_t h_t(\mathbf{x})$. How can we fit H_T to the min of $\epsilon_{\mathbf{w}_1, H_T}^{exp}$?

The solution is a stagewise approach:

Brute force for t = 1, 2, ..., T1 $h_t \leftarrow WL(S, \mathbf{w}_1);$ 2 $\alpha_t \leftarrow \arg\min_{\alpha \in \mathbb{R}} \epsilon_{\mathbf{w}_1, H_{t-1} + \alpha h_t}^{exp};$ return $H_T = \sum_{t=1}^T \alpha_t h_t;$

(Friedman & al.'00)

AdaBoost

for
$$t = 1, 2, ..., T$$

1 $h_t \leftarrow WL(S, \underline{w}_t);$
2 $\alpha_t \leftarrow \arg\min_{\alpha \in \mathbb{R}} \epsilon_{w_t, \alpha h_t}^{exp};$
3 $w_{t+1,i} \leftarrow \frac{w_{t,i} \exp(-y_i \alpha_t h_t(\mathbf{x}_i))}{Z_t};$
 $(\forall (\mathbf{x}_i, y_i) \in S)$
return $H_T = \sum_{t=1}^T \alpha_t h_t;$

э.

Discrete and Real AdaBoosts (FS'97, KW'99, SS'99)

Let $h_t : \mathcal{X} \to \mathbb{B} \subseteq \mathbb{R}$. AdaBoost comes with two different flavors, depending on \mathbb{B} ... and all **are** boosting algorithms.

Real AdaBoost

for t = 1, 2, ..., T1 $h_t \leftarrow WL(S, \boldsymbol{w}_t);$ 2 $\alpha_t \leftarrow \arg\min_{\alpha \in \mathbb{R}} \epsilon_{\boldsymbol{w}_t, \alpha h_t}^{\exp};$ 3 $w_{t+1,i} \leftarrow \frac{w_{t,i} \exp(-y_i \alpha_t h_t(\boldsymbol{x}_i))}{Z_t};$ $(\forall (\boldsymbol{x}_i, y_i) \in S)$ return $H_T = \sum_{t=1}^T \alpha_t h_t;$

- + Any $\mathbb{B} \subseteq \mathbb{R}$;
- complexity (no closed form for [2]), numerical stability (weights), outside the boosting regime (risk)

Discrete AdaBoost

for
$$t = 1, 2, ..., T$$

1
$$h_t \leftarrow WL(S, \boldsymbol{w}_t);$$

$$2 \quad \alpha_t \leftarrow \frac{1}{2} \log\left(\frac{1-\epsilon_{\mathbf{w}_t,h_t}}{\epsilon_{\mathbf{w}_t,h_t}}\right) + \varepsilon_{\mathbf{w}_t,h_t}$$

$$\begin{array}{l} 3 \hspace{0.2cm} w_{t+1,i} \leftarrow \frac{w_{t,i} \exp(-y_i \alpha_t h_t(\boldsymbol{x}_i))}{Z_t};\\ (\forall (\boldsymbol{x}_i, y_i) \in \mathcal{S})\\ \text{return } H_T = \sum_{t=1}^T \alpha_t h_t; \end{array}$$

- Straightforward to implement,
 "best off the shelf classifier in the world";
- restricted to $\mathbb{B} = \{-1, +1\};$

In a \mathbb{R} eal-world, prediction $H_T(\mathbf{x}) \in \mathbb{R}$ may be interpreted as:

- a class (*sign*(*H*_T(*x*)));
- a confidence in the classification $(|H_T(\mathbf{x})|)$.

Ideally, the **optimal** classifier gives (i) the right class with (ii) the largest confidence (*i.e.* $+\infty$ when Bayes optimum is zero). *Ex*: **logit** prediction, $H(\mathbf{x}) = \log \frac{\Pr[y=\pm1|\mathbf{x}]}{\Pr[y=\pm1|\mathbf{x}]}$ (Friedman & al.'00).

What we want is a criterion $\ell_H((\mathbf{x}, \mathbf{y}))$ integrating both the sign and the confidence, instead of just $\ell_H((\mathbf{x}, \mathbf{y})) = 1_{sign(H(\mathbf{x})) \neq \mathbf{y}}$.

Margin $\ell_H((x, y))$

A margin (of H on (x, y)) satisfies four requirements:

- it is a function of $yH(\mathbf{x})$;
- it is monotonic increasing;
- 3 it is $\in [-1, +1];$
- negative iff $1_{sign(H(\mathbf{x}))\neq y} = 1$.

Margin of H₁ on example (x.

$$\ell_{H_{\mathcal{T}}}((\boldsymbol{x}, y)) = \frac{\exp(yH_{\mathcal{T}}(\boldsymbol{x})) - 1}{\exp(yH_{\mathcal{T}}(\boldsymbol{x})) + 1} \quad \left\{ \begin{array}{c} \leq 1 \quad (\text{good label}, \infty \text{ confidence}) \\ \geq -1 \quad (\text{bad label}, \infty \text{ confidence}) \end{array} \right.$$

Logit brings $\ell_{H_T}((\mathbf{x}, y)) = y(2 \operatorname{Pr}[y = +1|\mathbf{x}] - 1)$ (Friedman & al.'00).

Lifting to R: Margin error

Definition

Let $-1 \le \theta \le 1$. The **margin error**, $\nu_{\mathbf{w}_1, H_T, \theta}$, is the proportion of examples whose margin does not exceed θ :

$$u_{\mathbf{w}_1,H_{\mathcal{T}}, heta} = \mathbf{E}_{(\mathbf{x},y)\sim \mathbf{w}_1}(\mathbf{1}_{\ell_{H_{\mathcal{T}}}((\mathbf{x},y))\leq heta})$$

We have
$$\epsilon_{\mathbf{w}_1,H} \leq \nu_{\mathbf{w}_1,H_T,0}$$
.
 H_T is as good as:

- $\nu_{\mathbf{w}_1, H_T, \theta}$ is small,
- for any θ .

(*i.e.* the distribution of margins \rightarrow curve $1_{\theta \leq +1}$)

Lifting to R: Our Real Generalization of AdaBoost

Principle

"Forget" the direct minimization of the **exponential loss**. Rather focus on the **margin error**.

Real AdaBoost

- for *t* = 1, 2, ..., *T*
 - 1 $h_t \leftarrow WL(S, \boldsymbol{w}_t);$
 - 2 $\alpha_t \leftarrow \arg\min_{\alpha \in \mathbb{R}} \epsilon_{\mathbf{w}_t, \alpha h_t}^{\exp};$
 - 3 $w_{t+1,i} \leftarrow w_{t,i} \exp(-y_i \alpha_t h_t(\mathbf{x}_i))/Z_t, \forall i;$

return $H_T = \sum_{t=1}^T \alpha_t h_t$;

AdaBoost (Our generalization) for *t* = 1, 2, ..., *T* 1 $h_t \leftarrow WL(\mathcal{S}, W_t);$ 2 $\alpha_t \leftarrow \frac{1}{2h^*} \log \frac{1+\mu_t}{1-\mu_t};$ 3 $W_{t+1,i} \leftarrow W_{t,i} \times \frac{1 - (\mu_t y_i h_t(\mathbf{x}_i))/h_t^*}{1 - \mu^2}, \forall i;$ return $H_T = \sum_{t=1}^{T} \alpha_t h_t$; $h_t^{\star} = \max_{(\boldsymbol{x}, \boldsymbol{y}) \in S} |h_t(\boldsymbol{x})| \in \mathbb{R}^+$ $\mu_t = \mathbf{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathbf{w}_1}(\mathbf{y}h_t(\mathbf{x})/h_t^{\star}) \in [-1, +1]$ (note: $yh_t(\mathbf{x})/h_t^* = \ell_{h_t}((\mathbf{x}, \mathbf{y}))$ is also a margin on example (x, y)).

Properties (I): AdaBoost boosts all margins

Recall that $\nu_{\mathbf{w}_1, H_T, \theta}$ counts the % of examples with margin $\leq \theta$.

Theorem

$$\forall \mathbb{B} \subseteq \mathbb{R}, \ \overline{\forall \theta \in [-1, +1]}, \ \text{the margin error of } H_T \ \text{satisfies:} \\ \nu_{\mathbf{w}_1, H_T, \theta} \leq \left(\frac{1+\theta}{1-\theta}\right) \times \exp\left(-\frac{1}{2}\sum_{t=1}^T \mu_t^2\right) \\ \end{cases}$$

- Suppose $\forall t \ge 1, |\mu_t| \ge \gamma$ for some small $\gamma > 0$.
- Then $\nu_{\mathbf{w}_1, \mathcal{H}_T, \theta} \leq f(\theta) \times \exp(-\frac{T\gamma^2}{2}).$
- As $T \nearrow$, the lhs $\rightarrow 1_{\theta \leq +1}$.

Properties (II): AdaBoost is a boosting algorithm

Recall that $(\forall t \ge 1, |\mu_t| \ge \gamma) \Rightarrow \left(\nu_{\mathbf{w}_1, H_T, \theta} \le f(\theta) \times \exp(-\frac{T\gamma^2}{2})\right).$

- Run AdaBoost_R with $T = \Omega\left(\frac{1}{\gamma^2}\log\frac{f(\theta)}{\min_i w_{1,i}}\right)$;
- we obtain $\nu_{\boldsymbol{w}_1, H_T, \theta} = 0$;
- use with $\theta = 0$ to prove $\epsilon_{w_1,H_T} = 0$;
- (+more material) \Rightarrow AdaBoost_R is a boosting algorithm.

Weak Learning is in the assumption $ w \ge \gamma$						
	$\mathbb{B} = \{-1, +1\}$	$\mathbb{B} \subset \mathbb{R}$				
Random	Unbiased coin	Uniform $\in [-b, +b]$				
Satisfies	$\epsilon_{\mathbf{w}_{t,.}} = 1/2$	$\mu_t = 0$				
Weak Learning	$\begin{cases} \epsilon_{\mathbf{w}_t, h_t} \leq 1/2 - \gamma/2 \\ \epsilon_{\mathbf{w}_t, h_t} \geq 1/2 + \gamma/2 \end{cases}$	$ \mu_t \ge \gamma$				
Property	WL for $\mathbb{B} \subseteq \mathbb{R}$ generalize	WL for $\mathbb{B} \subseteq \mathbb{R}$ generalizes WL for $\mathbb{B} = \{-1, +1\}$				
For simplicity, we do not plug " $\Pr_{S \sim D^m}[.] > \delta'$ ": it would not change anything.						

Properties (III): Benefits of AdaBoost

AdaBoost_ ${\mathbb R}$ is a generalization of Discrete AdaBoost (perfect match if ${\mathbb B}=\{-1,+1\}).$

Compared to other Real AdaBoosts:

 all the algorithm is in closed form (no approximation = no complexity penalty);

• it works properly even on limit regimes:

• when h_t takes ∞ values (e.g. DT + logit at the leaves); yields e.g. $\mu_t = \sum_{i:|h_t(\mathbf{x}_i)|=\infty} w_{1,i} sign(y_i h_t(\mathbf{x}_i))$;

• when $\epsilon_{w_t,h_t} \rightarrow 0, 1$ (no weight change !);

 the computation of the leveraging coefficients (α_t) can be delayed towards the end of learning (reduces numerical instabilities);

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Properties (IV): A well-known fact lifted to ℝ

Weight modification rule

- $\mathbb{B} = \{-1, +1\} \text{ Perhaps the most popular fact about (Discrete Ada)Boosting is that examples$ **correctly** $(resp. badly) classified by <math>h_t$ get their weight **decreased** (resp. increased) (holds when $\epsilon_{\mathbf{w}_t, h_t} \leq 1/2$; otherwise, reverses the polarity).
 - $\mathbb{B}=\mathbb{R}~$ In AdaBoost_{\mathbb{R}}, examples that have their weight decreased are those for which:

 $\ell_{h_t}((\boldsymbol{x}, \boldsymbol{y})) \geq \mu_t$

The weak classifier's "local margin" exceeds its average margin (holds when $\mu_t \ge 0$; otherwise, reverses the polarity).

Experiments (I): Experimental setting

We pick 25 domains, most from the UCI repository.

- 10-fold stratified cross-validation, $T \in \{10, 50\}$;
- WL returns monomials with fixed length (Rank-1 DT with fixed depth, Nock'02);
- we compare three algorithms:
 - Discrete AdaBoost (Freund & Schapire'97),
 - AdaBoost_ℝ,
 - Real AdaBoost (Kivinen & Warmuth'99, Schapire & Singer'99),

with α_t approximated up to relative error $\leq 10^{-6}$, and using results from (Nock & Nielsen'06) to make the search faster;

Execution time

The implementations of Real AdaBoost and AdaBoost_{\mathbb{R}} use the same routines (same optimization).

The execution time for $AdaBoost_{\mathbb{R}}$ was smaller by orders of magnitude.

Experiments (II): General results

(see paper for details)

	<i>T</i> = 10			T = 50				
	D	U	Т	D	U	Т		
#best	7	11	9	7	15	6		
#second	9	6	5	9	4	5		
#worst	9	8	11	9	6	14		
D = Discrete AdaBoost								
$U = AdaBoost_{\mathbb{R}}$								
T = Real AdaBoost								

As ${\mathcal T}$ increases, $\mathsf{AdaBoost}_{\mathbb R}$ tends to become the winner.

Hard domains

On harder simulated domains (class/attribute noise, irrelevant attributes), AdaBoost_{\mathbb{R}} becomes the clear winner as T increases.

We think that this might be due to our gentler weight update rule.

Experiments (III): Margins

r = 6 litterals per rule. Recall that $\nu_{w_1,H_T,\theta}$ should be as small as possible, all the more for $\theta < 0$.

R. Nock and F. Nielsen A T eal Generalization of Discrete AdaBoost

Conclusion

- Since we deal with real-valued predictions, learning should take into account both the sign and the confidence in the model:
- Strong: require $\Pr_{S \sim D^m}[\nu_{D,H,\theta} \leq \varepsilon] \geq 1 \delta$ ($\varepsilon, \delta, \theta$ user-fixed);
- Weak: require $\Pr_{S \sim D^m}[\mu_t \ge \gamma] \ge \delta'$ (γ, δ' very small: *e.g.* tiny constant, $\approx 1/p(n)$, etc.);
- \Rightarrow What happens ?
 - Integrate Bayes rule in the bounds, and investigate convergence / stability.
 - Multiclass extensions.
 - etc.

Thank you for your attention

- Acknowledgements: Sony CSL Tokyo for a visiting grant during which part of this work was done (R. Nock).
- References:
- Schapire'90: "The Strength of Weak Learnability", Machine Learning Journal;
- Friedman & al.'00: "Additive Logistic Regression: a Statistical View of Boosting", Annals of
- Statistics;
 - Nock'02: "Inducing Interpretable Voting Classifiers without trading Accuracy for Simplicity: Theoretical results, Approximation algorithms, and Experiments", **Journal of Artificial Intelligence** Research;
- 4
- Freund & Schapire'97: "A Decision-Theoretic Generalization of On-line learning and an application to Boosting", Journal of Computer and System Sciences;
- Kivinen & Warmuth'99: "Boosting as Entropy Projection", ACM Int. Conference on Computational Learning Theory:
- Schapire & Singer'99: "Improved Boosting algorithms using Confidence-rated Prediction", Machine Learning Journal;
 - Nock & Nielsen'06: "On Weighting Clustering", IEEE Transactions on Pattern Analysis and Machine Intelligence;

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト