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Textures

Description

I Wavelet transform

Tasks
I Classification
I Retrieval

Brodatz
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Target applications
Generalized Gaussian
Exponential families

Popular models
Modeling wavelet coefficient distribution

I generalized Gaussian distribution (Do 2002, Mallat 1996)
I mixture of generalized Gaussian distributions (Allili 2012)
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Generalized Gaussian

Definition

f (x ;µ, α, β) =
β

2αΓ(1/β)
exp
(
−|x − µ|

β

α

)
I µ: mean (real number)
I α: scale (positive real number)
I β: shape (positive real number)

Multivariate version: a product of one dimensional laws
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Properties and examples

Contains
I Gaussian β = 2
I Laplace β = 1
I Uniform β →∞

Maximum likelihood
estimator

I Iterative procedure
(Newton-Raphson)

Exponential family

I For a fixed β
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Exponential families

Definition

p(x ;λ) = pF (x ; θ) = exp (〈t(x)|θ〉 − F (θ) + k(x))

I λ source parameter
I t(x) sufficient statistic
I θ natural parameter
I F (θ) log-normalizer
I k(x) carrier measure

F is a stricly convex and
differentiable function
〈·|·〉 is a scalar product

Generalized Gaussian
Fixed µ and β

I t(x) = −|x − µ|β
I θ = α−β

I F (θ) =

−β log(θ) + log
(

β
2Γ(1/β)

)
I k(x) = 0
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Target applications
Generalized Gaussian
Exponential families

A large class of distributions
Gaussian or normal (generic, isotropic Gaussian, diagonal Gaussian,
rectified Gaussian or Wald distributions, log-normal), Poisson,
Bernoulli, binomial, multinomial (trinomial, Hardy-Weinberg
distribution), Laplacian, Gamma (including the chi-squared), Beta,
exponential, Wishart, Dirichlet, Rayleigh, probability simplex,
negative binomial distribution, Weibull, Fisher-von Mises, Pareto
distributions, skew logistic, hyperbolic secant, negative binomial,
etc.

With a large set of tools

I Bregman Soft Clustering (EM like algorithm)
I Bregman Hard Clustering (k-means like algorithm)
I Kullback-Leibler divergence (through Bregman divergence)

Strong links with the Bregman divergences (Banerjee 2005)
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Bregman divergence

Definition and properties

I BF (p, q) = F (p)− F (q) + 〈p − q|∇F (q)〉
I F is a stricly convex and differentiable function
I Centroids known in closed-form

Legendre duality

I F ?(η) = supθ {〈θ, η〉 − F (θ)}
I η = ∇F (θ), θ = ∇F ?(η)

Bijection with exponential families

log pF (x |θ) = −BF∗(t(x) : η) + F ∗(t(x)) + k(x)
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Complete log-likelihood
Algorithm
Key points

Usual setup: expectation-maximization
Joint probability with missing component labels

I Observations from a finite mixture

p(x1, z1, . . . , xn, zn) =
∏
i

p(zi |ω)p(xi |zi , θ)

I Marginalization

p(x1, . . . , xn|ω, θ) =
∏
i

∑
j

p(zi = j |ω)p(xi |zi = j , θ)

EM maximizes

l̄ =
1
n
log p(x1, . . . , zn) =

1
n

∑
i

log
∑

j

p(zi = j |ω)p(xi |zi = j , θ)
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Complete log-likelihood
Complete average log-likelihood

l̄ ′ =
1
n
log p(x1, z1, . . . , xn, zn) =

1
n

∑
i

log
∏
j

(
(ωjp(xi , θj))δ(zi )

)
=

1
n

∑
i

∑
j

δ(zi ) (log p(xi , θj) + logωj)

But p is an exponential family

log p(xi , θj) = log pF (xi , θj) = −BF∗(t(x), ηj) + F ?(t(x)) + k(x)︸ ︷︷ ︸
does not depend on θ
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With fixed weights

Equivalent problem

I Minimizing

−l̄ ′ =
1
n

∑
i

∑
j

δ(zi ) (BF∗(t(x), ηj)− logωj)

=
1
n

∑
i

min
j

(BF∗(t(x), ηj)− logωj)

Bregman k-means with BF? − logωj for divergence
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k-Maximum Likelihood estimator

Nielsen 2012

1. Initialization (random or
k-MLE++)

2. Assignment
zi = argminBF? − logωj
(gives a partition in cluster Cj)

3. Update of the ηj parameters
ηj = 1

|Cj |
∑

x∈Ci
t(x) (Bregman

centroid)
4. Goto step 2 until local convergence

5. Update of the weights ωj =
|Cj |
n

6. Goto step 2 until local convergence

Update

parameters

Initialization

Assignment

Update

weights
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Key points

k-MLE
I optimizes the complete log-likelihood
I is faster than EM
I converges finitely to a local maximum

Limitations
I All the components must belong to the same family
I F ? may be difficult to compute (without closed form)

What if each component belongs to a different EF ?
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Direct applications of k-MLE
or of EM (Bregman Soft Clustering)

A mixture model
I with all components in same the mixture model
I generalized Gaussian sharing the same µ: same mean
I generalized Gaussian sharing the same β: same shape
I one degree of freedom: α (scale)

May be useful

I See mixtures of Laplace distributions (β = 1)

Not enough for texture description
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Complete log-likelihood revisited
Complete average log-likelihood

l̄ ′ =
1
n
log p(x1, z1, . . . , xn, zn) =

1
n

∑
i

∑
j

δ(zi ) (log p(xi , θj) + logωj)

Each component is an exponential family

l̄ ′ =
1
n

n∑
i=1

k∑
j=1

δj(zi )
(
−BFj

∗(t(xi ) : ηj) + Fj
∗(t(xi )) + kj(xi ) + logωj

)
︸ ︷︷ ︸

−Uj(xi ,ηj)
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Optimizing the log-likelihood

Equivalent problem

I Minimizing

−l̄ ′ =
1
n

n∑
i=1

k∑
j=1

δj(zi )Uj (xi , ηj)

Uj

I Not a distance nor a divergence
I Can even be negative

k-means still works well (Assignment step with maximum
likelihood)
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Full algorithm: k-MLE-GG

1. Initialization
2. Assignment

zi = argmaxj log(ωjpFj (xi |θj))

3. Update of the ηj parameters
4. Goto step 2 until local

convergence
5. Choose the exponential family

(µj and βj with MLE)
6. Update of the weights ωj

7. Goto step 2 until local
convergence

Update

parameters

Initialization

Assignment

Update

weights
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Choose

family
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Comparaison with Gaussian EM
On simulated data
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I A mixture of generalized Gaussian is faster to learn than a
mixture of simple Gaussians !

I Performs similarly (log-likelihood)
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Comparaison with generalized Gaussian EM

Allili 2010

On a texture of the Brodatz dataset

Performs similarly on a classification task
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Conclusion

Contributions
I Extension of a powerful algorithm
I More general than k-MLE or EM
I Still faster than a classical EM
I Mixtures with components not belonging to the same

exponential family

Perspectives

I Exponential law / Rayleigh → Weibull
I Any parametrized exponential family
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