# k-Maximum Likelihood Estimator for mixtures of generalized Gaussians ICPR 2012, Tokyo, Japan

#### Olivier Schwander Aurélien Schutz Yannick Berthoumieu Frank Nielsen

Laboratoire d'informatique, École Polytechnique, France Laboratoire IMS, Université de Bordeaux, France Sony Computer Science Laboratories Inc., Tokyo, Japan

November 14, 2012 (updated version)

## Outline

#### Motivation and background

Target applications Generalized Gaussian Exponential families

#### k-Maximum Likelihood estimator

Complete log-likelihood Algorithm Key points

#### Mixtures of generalized Gaussian distribution

Direct applications of *k*-MLE Rewriting complete log-likelihood Experiments

## Textures

## Brodatz

Target applications

Generalized Gaussian

#### Description

Wavelet transform

## Tasks

- Classification
- Retrieval



## Popular models

## Modeling wavelet coefficient distribution

- generalized Gaussian distribution (Do 2002, Mallat 1996)
- mixture of generalized Gaussian distributions (Allili 2012)



Olivier Schwander

k-MLE for generalized Gaussians

## Generalized Gaussian

## Definition

$$f(x; \mu, \alpha, \beta) = rac{eta}{2lpha \Gamma(1/eta)} \, \exp\left(-rac{|x-\mu|^{eta}}{lpha}
ight)$$

- ▶ µ: mean (real number)
- α: scale (positive real number)
- β: shape (positive real number)

Multivariate version: a product of one dimensional laws

## Properties and examples

## Contains

- Gaussian  $\beta = 2$
- Laplace  $\beta = 1$
- Uniform  $\beta \to \infty$

## Maximum likelihood estimator

 Iterative procedure (Newton-Raphson)

## Exponential family

• For a fixed  $\beta$ 



# Exponential families

## Definition

$$p(x; \lambda) = p_F(x; \theta) = \exp(\langle t(x) | \theta \rangle - F(\theta) + k(x))$$

- $\lambda$  source parameter
- t(x) sufficient statistic
- $\theta$  natural parameter
- F(θ) log-normalizer
- k(x) carrier measure

F is a stricly convex and differentiable function  $\langle \cdot | \cdot \rangle$  is a scalar product

Generalized Gaussian Fixed  $\mu$  and  $\beta$ 

$$t(x) = -|x - \mu|^{\beta}$$

• 
$$\theta = \alpha^{-p}$$

$$F(\theta) = -\beta \log(\theta) + \log\left(\frac{\beta}{2\Gamma(1/\beta)}\right)$$

• k(x) = 0

T

Target applications Generalized Gaussian Exponential families

# A large class of distributions

Gaussian or normal (generic, isotropic Gaussian, diagonal Gaussian, rectified Gaussian or Wald distributions, log-normal), Poisson, Bernoulli, binomial, multinomial (trinomial, Hardy-Weinberg distribution), Laplacian, Gamma (including the chi-squared), Beta, exponential, Wishart, Dirichlet, Rayleigh, probability simplex, negative binomial distribution, Weibull, Fisher-von Mises, Pareto distributions, skew logistic, hyperbolic secant, negative binomial, etc.

## With a large set of tools

- Bregman Soft Clustering (EM like algorithm)
- Bregman Hard Clustering (k-means like algorithm)
- Kullback-Leibler divergence (through Bregman divergence)

Strong links with the Bregman divergences (Banerjee 2005)

## Bregman divergence

## Definition and properties

- $\blacktriangleright B_F(p,q) = F(p) F(q) + \langle p q | \nabla F(q) \rangle$
- ► F is a stricly convex and differentiable function
- Centroids known in closed-form

## Legendre duality

$$\blacktriangleright F^{\star}(\eta) = \sup_{\theta} \left\{ \langle \theta, \eta \rangle - F(\theta) \right\}$$

$$\bullet \ \eta = \nabla F(\theta), \ \theta = \nabla F^{\star}(\eta)$$

#### Bijection with exponential families

$$\log p_F(x|\theta) = -B_{F^*}(t(x):\eta) + F^*(t(x)) + k(x)$$

Usual setup: expectation-maximization

Joint probability with missing component labels

Observations from a finite mixture

$$p(x_1, z_1, \ldots, x_n, z_n) = \prod_i p(z_i | \omega) p(x_i | z_i, \theta)$$

Marginalization

$$p(x_1,\ldots,x_n|\omega,\theta) = \prod_i \sum_j p(z_i=j|\omega)p(x_i|z_i=j,\theta)$$

EM maximizes

$$\overline{l} = \frac{1}{n} \log p(x_1, \dots, z_n) = \frac{1}{n} \sum_{i} \log \sum_{j} p(z_i = j | \omega) p(x_i | z_i = j, \theta)$$

## Complete log-likelihood

Complete average log-likelihood

$$\bar{l}' = \frac{1}{n} \log p(x_1, z_1, \dots, x_n, z_n) = \frac{1}{n} \sum_i \log \prod_j \left( (\omega_j p(x_i, \theta_j))^{\delta(z_i)} \right)$$
$$= \frac{1}{n} \sum_i \sum_j \delta(z_i) \left( \log p(x_i, \theta_j) + \log \omega_j \right)$$

But p is an exponential family

$$\log p(x_i, \theta_j) = \log p_F(x_i, \theta_j) = -B_{F^*}(t(x), \eta_j) + \underbrace{F^*(t(x)) + k(x)}_{\text{does not depend on } \theta}$$

## With fixed weights

## Equivalent problem

Minimizing

$$-\bar{l}' = \frac{1}{n} \sum_{i} \sum_{j} \delta(z_i) \left( B_{F^*}(t(x), \eta_j) - \log \omega_j \right)$$
$$= \frac{1}{n} \sum_{i} \min_{j} \left( B_{F^*}(t(x), \eta_j) - \log \omega_j \right)$$

Bregman k-means with  $B_{F^{\star}} - \log \omega_j$  for divergence

# k-Maximum Likelihood estimator

#### Nielsen 2012

- Initialization (random or k-MLE++)
- 2. Assignment  $z_i = \arg \min B_{F^*} - \log \omega_j$ (gives a partition in cluster  $C_j$ )
- 3. Update of the  $\eta_j$  parameters  $\eta_j = \frac{1}{|C_j|} \sum_{x \in C_i} t(x)$  (Bregman centroid)
- 4. Goto step 2 until local convergence
- 5. **Update** of the weights  $\omega_j = \frac{|C_j|}{n}$
- 6. Goto step 2 until local convergence



# Key points

## *k*-MLE

- optimizes the complete log-likelihood
- is faster than EM
- converges finitely to a local maximum

## Limitations

- All the components must belong to the same family
- ► *F*<sup>\*</sup> may be difficult to compute (without closed form)

What if each component belongs to a different EF ?

## Direct applications of k-MLE

or of EM (Bregman Soft Clustering)

## A mixture model

- with all components in same the mixture model
- generalized Gaussian sharing the same  $\mu$ : same mean
- generalized Gaussian sharing the same  $\beta$ : same shape
- one degree of freedom:  $\alpha$  (scale)

## May be useful

• See mixtures of Laplace distributions ( $\beta = 1$ )

## Not enough for texture description

# Complete log-likelihood revisited Complete average log-likelihood

$$\overline{l}' = \frac{1}{n} \log p(x_1, z_1, \dots, x_n, z_n) = \frac{1}{n} \sum_i \sum_j \delta(z_i) \left( \log p(x_i, \theta_j) + \log \omega_j \right)$$

Each component is an exponential family

$$\bar{l}' = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} \delta_j(z_i) \underbrace{\left(-B_{F_j^*}(t(x_i):\eta_j) + F_j^*(t(x_i)) + k_j(x_i) + \log \omega_j\right)}_{-U_j(x_i,\eta_j)}$$

Direct applications of *k*-MLE Rewriting complete log-likelihood Experiments

# Optimizing the log-likelihood

## Equivalent problem

Minimizing

$$-\overline{I}' = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{k} \delta_j(z_i) U_j(x_i, \eta_j)$$

 $U_j$ 

- Not a distance nor a divergence
- Can even be negative

# *k*-means still works well (**Assignment** step with maximum likelihood)

Direct applications of *k*-MLE Rewriting complete log-likelihood Experiments

# Full algorithm: *k*-MLE-GG

- 1. Initialization
- 2. Assignment
  - $z_i = \arg \max_j \log(\omega_j p_{F_j}(x_i | \theta_j))$
- 3. Update of the  $\eta_j$  parameters
- 4. Goto step 2 until local convergence
- 5. Choose the exponential family  $(\mu_j \text{ and } \beta_j \text{ with MLE})$
- 6. Update of the weights  $\omega_j$
- 7. Goto step 2 until local convergence



Direct applications of *k*-MLE Rewriting complete log-likelihood Experiments

# Comparaison with Gaussian EM On simulated data



- A mixture of generalized Gaussian is faster to learn than a mixture of simple Gaussians !
- Performs similarly (log-likelihood)

 $\begin{array}{c} \mbox{Motivation and background}\\ k\mbox{-Maximum Likelihood estimator}\\ \mbox{Mixtures of generalized Gaussian distribution} \end{array}$ 

Direct applications of *k*-MLE Rewriting complete log-likelihood **Experiments** 

# Comparaison with generalized Gaussian EM Allili 2010

On a texture of the Brodatz dataset





Performs similarly on a classification task

# Conclusion

## Contributions

- Extension of a powerful algorithm
- More general than k-MLE or EM
- Still faster than a classical EM
- Mixtures with components not belonging to the same exponential family

#### Perspectives

- Exponential law / Rayleigh  $\rightarrow$  Weibull
- Any parametrized exponential family

# Bibliography

- F. Nielsen k-MLE: A fast algorithm for learning statistical mixture models http://arxiv.org/abs/1203.5181
- M.S. Allili Wavelet Modelling Using Finite Mixtures of Generalized Gaussian Distributions: Application to Texture Discrimination and Retrieval. IEEE Trans. on Image Processing, , 2012.